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We consider non-axisymmetric motion of a rigid particle in a cylindrical fluid-filled 
tube, with negligible inertial effects. The particle is assumed to fit closely in the tube, 
and lubrication theory is used to describe the fluid flow in the narrow gap between the 
particle and the tube wall. The solution to the Reynolds lubrication equation and the 
components of the resistance matrix are expressed in terms of a Green’s function. For 
the case in which the gap is almost uniform, the Green’s function is expanded as a 
power series in a small parameter S, characteristic of the variations in gap width, and 
the first two terms are obtained. 

The velocity of a freely suspended axisymmetric particle driven by a pressure 
difference along the tube is deduced from the resistance matrix. According to the 
results at first order in S, in general the particle moves transversely with a constant 
velocity. In the absence of higher-order effects, it would eventually collide with the wall. 
Motion along the tube axis is a neutrally stable solution to the equations of motion at 
first order. However, if effects at second order in 6 are included, motion of an 
axisymmetric particle along the tube axis is stable or unstable depending on its shape. 
Generally, if the particle is narrower near the front than near the rear, and the width 
near the middle is at least as large as the mean of the widths near the front and rear, 
then its motion is stable. Numerical calculations (not restricted to small 6) confirm 
these results for axisymmetric particles, and show that a non-axisymmetric shape 
similar to a red blood cell has a stable equilibrium position in the tube. 

1. Introduction 
A number of physical systems involve the motion of freely suspended particles 

through fluid-filled passages, when the particle size is comparable with the diameter or 
width of the pathway, and when inertial effects may be assumed negligible. Biological 
examples include the motion of red and white blood cells through capillaries and the 
motion of solute molecules through narrow pores in vessel walls or other structures. 
More generally, flow of suspensions or two-phase fluids through porous media often 
results in systems of this type. 

Most theoretical studies of such systems have considered non-interacting rigid 
spherical particles in a cylindrical tube, or have assumed that the particles are 
axisymmetric and located on the axis of the tube. In both cases, symmetry arguments 
show that the particle moves parallel to the tube axis, without migrating in the radial 
direction. In the case of rigid spheres, this conclusion depends on the linearity of the 
governing equations, and radial migration is possible if inertial effects are present, if the 
particle is deformable, or if the suspending fluid is non-Newtonian (Leal 1980). 

Analyses of the motion of a single rigid spherical particle within a cylindrical tube 
were reviewed by Happel & Brenner (1973), who present a theory for the case when the 
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radius of the sphere is small relative to the tube radius. The case of a closely fitting 
sphere was analysed by Christopherson & Dowson (1 959) using lubrication theory, 
and Bungay & Brenner (1973) using a singular perturbation approach. As pointed out 
above, no radial migration is predicted. 

Numerous studies have been made of the motion of axisymmetric but non-spherical 
particles moving along the tube axis. Both rigid and deformable particles have been 
considered. Wakiya (1957) and Chen & Skalak (1970) developed analytic solutions for 
rigid spheroidal particles. Zarda, Chien & Skalak (1977) used a finite-element 
numerical method to describe the motion of deformable red blood cells. The 
observation that red and white blood cells have dimensions comparable with capillary 
diameters and are often closely fitting led to analyses using lubrication theory, 
including Barnard, Lopez & Hellums (1968), Lighthill (1968), Tozeren & Skalak 
(1978), and Secomb et al. (1986). 

Observed blood cell shapes in microvessels are frequently non-axisymmetric. Also, 
cells often enter a vessel segment in off-axis positions. Few analyses have been made 
of asymmetric motion of highly non-spherical particles in tubes. Secomb & Skalak 
(1982) developed a two-dimensional model for capillary flow of a very flexible, 
asymmetric cell, using lubrication theory. Sugihara-Seki, Secomb & Skalak (1 990) 
considered a two-dimensional model for two-file flow of cells with prescribed shapes, 
using a finite-element method. Hsu & Secomb (1989) used lubrication theory to analyse 
the motion of non-axisymmetric red blood cells in cylindrical capillaries, and 
determined the cell orientation and transverse displacement at which the conditions 
of zero lift, drag and torque were satisfied, for given cell shape and tube diameter. 
However, no systematic study was made of the stability of these equilibrium positions, 
or of the trajectories followed by cells starting from different initial positions. 

The goal of the present work is to determine trajectories of non-spherical particles 
flowing along tubes, when the particle is not axisymmetrically located, and to analyse 
the stability of motion of axisymmetric particles on the tube axis. For simplicity, we 
assume that the particles are rigid. The results represent a first step towards analysing 
the motion of flexible particles. 

We use lubrication theory, under the assumption that the particle fits closely in the 
tube. The equations governing the motion of the suspending fluid around the particle 
are then greatly simplified, compared with other approaches described above. 

The ability of lubrication theory to describe particle-to-wall interactions in Stokes 
flow depends on the configuration being considered, and particularly on the size of the 
narrow-gap region relative to the overall particle size. In the case of a sphere moving 
adjacent to a plane wall, lubrication theory does not provide good approximations to 
the force on the sphere (Goldman, Cox & Brenner 1967). The narrow-gap region 
represents only a small part of the sphere’s surface, and even though large stresses 
occur there, the resultant forces and torques do not dominate those generated 
elsewhere. However, lubrication theory does yield good approximations for the 
pressure drop across a sphere moving on the axis of a cylindrical tube, even when gap 
width is not very small (Hochmuth & Sutera 1970; Secomb et al. 1986). In that case, 
the lubrication region is a band around the circumference of the sphere, and represents 
a larger fraction of the sphere’s surface than in the case of a sphere adjacent to a plane 
wall. In the case of an elongated closely fitting particle in a tube, the lubrication region 
extends over an even larger fraction of the particle’s surface. Since the largest stresses 
are generated in the lubrication region, it follows that lubrication theory should yield 
useful estimates of resultant forces for a broad class of closely fitting particle shapes in 
fluid-filled tubes. 
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2. The lubrication equation 
The configuration is indicated in figure 1. A particle fits closely within a cylindrical 

tube of radius r ,  filled with an incompressible Newtonian fluid with viscosity p, and 
moves along the tube with velocity of order u,. At this point, we make all variables non- 
dimensional with respect to u,, ro and p, unless otherwise stated. For instance, 
pressures and stresses are non-dimensionalized with respect to pu,/r,. 

The particle surface is almost cylindrical in the region in which it closely approaches 
the wall of the tube. We assume that the gap width in the region is of order F 4 1. It 
is convenient to introduce cylindrical coordinate systems ( r ,  8, z )  fixed in the particle 
frame, and (r', 8,z') fixed in the tube frame. The tube wall is then located at r' = 1.  The 
2'-axis is not necessarily parallel to the z-axis, but lies within a distance e of the z-axis 
over the length of the particle. Then the particle surface and the tube wall are described 
by r = 1 + F&,(z, 8) and r = 1 + E[,(Z, 8, t )  (2.1) 
respectively, where &, and 6, are O(1). 

and the pressure p satisfy the Stokes equations 
We assume that inertial effects are negligible, so that the fluid velocity u = (uT, uo, u,) 

0 = -Vp+V% (2.2) 
and V - U = Q .  (2.3) 
If the length of the particle is of order 1, then (2.3) implies that u, = O(e), and the 
z-component of (2.2) implies that p = O(e-'). However, the r-component of (2.2) 
implies that variations in p across the gap (in the r-direction) are of order so. Therefore, 
the pressure is uniform across the gap at the two leading orders in F (E-' and 6-l). 

We introduce scaled variables as follows: 

6 = ( r -  l)/s, P = s2p, U,. = e-lu,, U, = u,, U, = u,. (2.4) 
At leading order in e, the z- and 0-components of (2.2) yield 

We suppose that the wall moves with velocity u,(z, 8, t )  = (EU,,, U,,, Uz,) in the 
particle frame. From (2.1), the no-slip boundary conditions at the particle and tube 
surfaces are 

u =  0 when [ =  6, and u = u, when [ =  6,. 
Using (2.5), the velocity in the gap may be computed in terms of the pressure 

where h(z, 0, t )  = $, - &, is the gap width. The volume flux in the gap between the 
particle and the wall is given at leading order by Q,(z, 8, t )  and Qo(z, 8, t )  where 

Applying the continuity condition (2.3) gives 
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FIGURE 1. Particle in a tube, with coordinates fixed in the particle. 

Evaluating (2.8) and substituting in (2.9) yields the well-known Reynolds equation of 
lubrication theory (Cameron 1966, p. 61), which we write in the form 

UP) = f ( z ,  e,o, (2.10) 

where 

and 

L(P) = - h3-  +- h3- iZ( :) :*( E) 

The pressure P is periodic in 0 with period 2x, and takes a prescribed value at each 
end of the lubrication region. We assume that the region of narrow gap is given by 
S = f - 7c d 0 d x ,  z-(8) < z < z+(8)). Since the driving pressure must balance the shear 
stress on the particle, which is O(E-'), the driving pressure is also O(epl). The 
fluctuations in pressure within the gap are therefore generally an order of e-l larger 
than the overall pressure change, as is often the case in lubrication. Consequently, the 
boundary conditions are, at leading order, 

3. The stability of axial particle motions: qualitative arguments 
Before proceeding with the detailed analysis of (2.10), we present qualitative 

arguments regarding the stability of the motion of an axisymmetric particle along the 
tube axis. The conclusions of this section will be confirmed and extended by the 
subsequent analyses ($947). Similar qualitative arguments are given by Boyd (1964), 
for the cases noted below. The theory of thrust pad bearings (Cameron 1966) is also 
relevant . 

For this discussion, we assume that an axisymmetric particle is placed in the tube, 
and constrained to move with velocity U, parallel to the tube axis without rotation. We 
suppose that the particle axis may be displaced or rotated relative to the tube axis, with 
the two axes coplanar. The resulting particle-tube configuration has mirror symmetry 
about the plane containing the axes. We consider the resultant forces and/or torques 
on the particle, resulting from the pressure distribution in the narrow gap surrounding 
the particle. According to the scalings above, the resultant forces due to pressure 
variations in the gap dominate those due to shear stresses. From the symmetry of the 
configuration, these resultant forces act in the symmetry plane. To further simplify the 
problem, we assume that the particle is sufficiently cylindrical and the displacement of 
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the particle is sufficiently small that the gap width h is nearly uniform over the surface 
of the particle. 

Under these assumptions, (2.10) becomes 

with homogeneous, &periodic boundary conditions. Since h is nearly uniform, the left- 
hand side of (3.1) is approximately equal to h3V2P (corresponding to a Hele-Shaw 
flow). Since the boundary conditions are homogeneous, well-known properties of the 
Laplacian imply that negative values of ah/& correspond to a source term and 
generate positive pressure P, and vice versa. Furthermore, the amplitude of the 
pressure fluctuations generated for a given ah/az must increase as h decreases 
(approximately in proportion to h-3). These two qualitative properties of (3.1) provide 
a basis for predicting the stability of axial particle motions. 

Several axisymmetric cell shapes are shown schematically in figure 2, as they 
intersect the symmetry plane. We consider the pressures generated in the upper and 
lower gaps in this plane, which are representative of the pressure generated around the 
upper and lower parts of the particle circumference. The particle motion is from left 
to right in each case. 

First, we consider a cylindrical particle. If the particle is displaced from the axis 
without rotation (figure 2a), no pressure changes are generated according to this 
approximation. If the particle is rotated (figure 2b), the pressure increases in that part 
of the gap that is wider at the front than at the rear, and decreases on the opposite side 
of the particle. The particle will therefore tend to move transversely in the direction 
indicated (Boyd 1964). As figure 2(d,f,  h) indicates, this characteristic is retained even 
if the particle is not cylindrical. We shall show later that the particle motion at each 
instant is approximately parallel to the bisector of the particle axis and the tube axis. 

Next, we consider a tapered particle, narrower at the front than at the rear. Positive 
pressures are generated on all sides of the particle. If it is displaced sideways (figure 2 c), 
higher pressures are generated on the side where the gap is narrower, tending to restore 
the particle to the axis (Boyd 1964). (For further discussion of this case see the 
paragraph on third-order effects in 96). Similarly, if the particle is rotated (figure 2 4 ,  
a torque that tends to realign the particle is superimposed on the transverse force. 
From these arguments, we may guess that particle motion on the axis is stabilized by 
such a taper, as will be confirmed later. Conversely, a tapered particle that is wider at 
the front than the rear will be unstable with respect to both displacement and rotation, 
since large negative pressures will be generated where the gap is narrowest. 

Figure 2(e) shows a particle that is wider at the ends than the middle. Sideways 
displacement of such a particle results in a torque, and particle rotation in the direction 
of the torque causes the particle to move further from the axis (figure 2f ) .  We conclude 
that motion of such a particle along the tube axis in either direction is likely to be 
unstable. 

Finally, we consider a particle that is wider at the middle than the ends (figure 2g). 
Transverse displacement of this particle generates a torque opposite to that in figure 
2(e). Rotation of the particle in the direction of the torque will produce a transverse 
force tending to restore the particle to the axis (the converse of the case shown in figure 
2h). However, this process involves a time lag, suggesting the possibility of oscillatory 
behaviour. 

Clearly, a detailed analysis is required to test, extend, and make quantitative the 
above predictions. Such an analysis follows. 
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FIGURE 2. Schematic representation of pressure distributions and resultant forces and torques 
generated by transverse displacements (a, c, e ,  g) or rotations (b,  d,J h)  of axisymmetric particles 
moving to the right in a cylindrical tube. Positive pressures are denoted by + and negative pressures 
by -. Where the gap is relatively narrow, the magnitude of the pressure variation is large, as 
indicated by + + or - -. See text for further explanation. 

4. Formulation of the problem and Green’s function solution 
4.1. Geometry and kinematics 

To describe the relative motion of tube and particle, we introduce Cartesian 
coordinates (x, y ,  z )  fixed in the particle, with the x-axis in the 0 = 0 direction of the 
(Y, 19, z )  system, and similarly Cartesian coordinates (x’, y’, z’) fixed in the tube. We 
suppose that the origin of the tube coordinates is at (ea, eb, c)  and the tube (z’) axis is 
parallel to (€a, @,l) in the particle frame (x, y ,  z) .  The x’-axis is assumed to be at an 
angle y to the x-axis, i.e. parallel to (cosy,siny, -eacosy-e/3siny) in the (x,y,z) 
frame. The parameters a, b, c, a, ,!I and y are functions of time, and are O( 1) according 
to the assumptions already stated. Then 

x = cos (y + el) + €a + mz’ + 0(€2), 
y = sin (y + 8’) + eb + epz‘ + O(e2), 

z = c+ z’- mcos (y + el) -$sin (y + 8’) + O(e2), 
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i K  Y 4 
1 V ,  cos6 F, 
2 V ,  sine 4 
3 -ag,/az 4 
4 a, -zsin6 T,  
5 a, zcose T,  
6 a, -ag,/as T, 

TABLE 1. The < and in equation (4.9) and the 4 in (4.12) 

and so the tube surface is given in particle coordinates by 

[Jz, 8, t) = [a + a(z - c)] cos 8 + [b + /3(z - c)] sin 8. (4.2) 
We let (e V,, e c ,  V,) and (eQ,, eQV, Qz) be the Cartesian components of the velocity 

and angular velocity of the particle relative to the tube, expressed in the particle 
coordinates. The velocity of a point (x,y,z) fixed in the tube is then 

(4.3) 
Comparing this with the time-derivative of (4. l), we find the following conditions for 
consistency at leading order in 6 :  

u = - [(sCl,, €5, v,) + (€ax, CQ,, 0,) x (x,y, 41. 

From (4.3), the leading-order components of tube wall velocity in cylindrical 
coordinates are 

U,, = - Qz, U,, = - V,  cos I9 - V,  sin 8 - (Qy cos I9 - Q, sin 8)z. (4.5) 

Now, V,, is the radial velocity of a point moving with the tube, while ah/at is 
U,, = - V,, 

evaluated at a constant value of z. Therefore, since the particle is at rest, 

ah acw acuJ - = u,, - u,, - - u,, - . 
at a Z  a8 

Equations (4.5) and (4.6) are substituted in the right-hand side of the lubrication 
equation (2.10), giving 

Kcos8+ V,sin~9+(SZ,cos8-Q,sin~)z- 

where 

It is convenient to write (4.7) in the form 
c & 7  8, t> = t[t,(Z, I 9 9 0  + t p ( z ,  @)I. 

where 
variables is considered implicit from here on. 

and J$( are as defined in table 1, and where the time dependence of all the 

14 FLM 257 
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4.2. Force and torque on the particle 
At leading order in 6, the components of stress in the fluid are 

and the unit vector normal to the particle is (1, -eat,/aO, -ea&,/az). Therefore, the 
components of force per unit area exerted by the fluid on the particle are at leading 
order ( e - ’ ~ ~ ,  e - l ~ ~ ,  e - l ~ ~ ) ,  where, from (2.7) 

The Cartesian components of total force and torque on the particle resulting from 
fluid stresses in the narrow-gap region may be written ( ~ - ’ I $ , B - ~ ~ , E - ~ I ; )  and 
( E - ~ C ,  c 2 T y ,  s-lT,). To obtain the components, the Cartesian resultants of (4.1 1) 
are integrated over the gap. After some manipulation, it is found that 

4 = - P(z, 8) Y(Z, 0) dS- 6 q, (4.12) 

are the same 
s, 

where 4 are the components of force and torque as defined in table 1 ,  
functions that appeared in (4.9) and table 1,  and 

w =  -dS if i = 3 o r 6 ;  WL=O if i = l , 2 , 4 o r 5 .  (4.13) Is: 
4.3. Green’s function solution. 

P = Is* G(z, 0; z*, O*) f (z*, S*) dS*, 

The solution to (2.10) and (2.1 1) is 

where the Green’s function G satisfies 
L(G) = &(z - z* )  8(0 - O*) 

and the boundary conditions (2.1 1). Using (4.9), therefore, 

G(z, 8 ;  z*, 0*) K(z*, 0*) dS*. 

Combining this with (4.12), we find that 
6 

I$ = R, J$ 
j=1 

where the resistance matrix Rtj is given by 
r r  

(4.14) 

(4.15) 

(4.16) 

G(z, 8; z*, O*) K ( z ,  0) q ( z * ,  0*) dSdS* - 8, Wi (4.17) JL* R, = 12 

and Sij denotes the Kronecker delta. 
The operator L may be shown to be self-adjoint with respect to functions satisfying 

(2.11). It follows that the Green’s function G is symmetric with respect to its 
arguments (z,  0) and (z*, 8*), and therefore that the matrix Rij is symmetric. Other 
general properties of the resistance matrix are discussed by Happel & Brenner (1973, 
p. 178). 
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5. The Green's function for almost uniform gaps 
In this section, we make two additional assumptions. We suppose that the front and 

rear boundaries of the lubrication region lie in planes perpendicular to the particle axis, 
i.e. that z-(O) = -1, and z+(O) = lo, where 1, is a constant. Also, we assume that the 
variations in the gap width are of order €6, where e @ 6 4 1 ,  so that higher-order [0(e2)] 
terms arising from lubrication theory terms may be neglected while O(s6) terms arising 
from variations in gap width are included. According to this assumption, the departure 
of the particle from cylindrical shape, and the displacement of the particle axis from 
the tube axis, must be small compared to the gap width. The tube wall is located at 
r = 1 +e6tW1 and the particle surface is located at Y = 1 -e+c6E;,,. Consequently, we 
let 

a = &a,, b = 6b,, OL = &a,, p = 6p1, 
h = 1 +ah, where h, = l&,l-L&lr (5.1) I t m  = -++ atm1 where t m l =  + t p J .  

It is convenient to express h, as a Fourier series: 

where H p  is complex for p + 0, with H-, = H,. 

set 
With these assumptions, the Green's function may be expanded in powers of 6. We 

G = Go+6G,+ ... and L = Lo+6L,+ ..., 
(5.3) 

a 2  a 2  

O - az2 a@ L --+- and where 

Then (4.15) gives at leading order 

We express Go as a Fourier series: 

where the real functions g ,  satisfy g-, = g, and 

The solutions satisfying the boundary conditions (2.1 1) are I * - ( - ( l o  + z, ('0 - z*)/2n107 
'I - (lo - z> (10 + z*)/274,  

z < z*; 
z > z*;  

- , z < z * ;  

- , z*. 

g o k z  - 

sinh [rn(lo + z)] sinh [m(l0 - z*)] 
mn sinh [2m10] 

sinh [rn(Zo -z)] sinh [rn(l0 + z*)] , 
mn sinh [2m10] 

Lo(G,) = - L,(Go). 

gm(z, z*) = 

At the next order, 6,: 

(5.7) 

(5.8) 
14-2 
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Using the leading-order Green’s function to invert Lo, and integrating by parts, we find 
that 

(5.9) 

a a +, G,(z, 0;  z’, 0’) 7 Go(z’, 6’; z*, 0” ae ae 
From (5.2) and (5 .9 ,  we deduce that 

Using these results and (4.17), the resistance matrix Rtj may be expanded in the form 

R, = R$‘) + 6R$’ + S2R$’ + . . . . (5.1 1) 

This expansion is straightforward but lengthy, and is omitted for brevity.? Several terms 
are evaluated as needed in the next section. 

6. Motion of an axisymmetric particle due to a pressure difference 
In the absence of body forces, the force driving the particle results from the pressure 

difference between the ends of the particle, and is in the z-direction. As discussed 
earlier, this pressure difference must be of order 6-l to give an O( 1) particle velocity, 
and we may assume 

(6- 1) 
This pressure difference, while much smaller than the O(e-’) pressures generated within 
the lubrication layer, appears at leading order in the axial force balance, since it acts 
on the ends of the particle. At leading order in 6, the resulting contribution to the force 
on the particle is xAp, and the condition of zero net force on the particle then gives 

Ap = P(z+) -P(z-) = - 46-’Z0. 

F,+4xl0=O and q=O for i $ 3 .  (6.2) 
The particle velocity satisfies the linear system 

We now restrict our attention to the case in which the particle shape is axisymmetric, 
since this greatly simplifies the analysis. Also, we assume that the gap is almost 
uniform, as in the previous section. (Examples in which these assumptions are not 
made are considered in the next section.) Therefore, the particle has radius 1 - e + sSs(z) 
where s(z) is a prescribed function describing the shape, and where we may assume that 
the mean of s(z) on [ - I o ,  lo] is zero. Furthermore, we assume for simplicity that the tube 
axis and the particle axis both lie in the plane y = 0, which is then a symmetry plane 
of the flow, and so 6 = 0 for i = 2,4,6 (see table 1). It can be shown that motion in 

t Details are given in an appendix available on request from the authors or the Editor. 
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this plane is decoupled from motion in the plane x = 0, up to O(S2). Therefore, general 
particle motions may be regarded as a superposition of motions in these two planes. 
Under these assumptions, 

and the only non-zero Fourier components appearing in (5.2) are 
gPl = s(z) and cWl = [a, + al(z - c)] cos 8 (6.4) 

H,,(z) = a,+a,(z-c) and H,(z) = -2s(z). (6.5) 
We expand the velocity: 

= v y + B q 1 ’ + 6 2 v y +  . , ._  
At order So, it is easily shown that the resistance matrix R$’) is diagonal, and that 
R$ = -47~1,. Therefore, 

with the choice of Ap made in (6.1). 
V $ ” = 1  and v)=O for i i 3  (6.7) 

At order 8, (6.3) gives 

Now, from (4.17), (5.5) and table 1, 

where 

Ri:) = $al K,, RE) = - K ~ ,  Rfi) = 35 = 0 and RG) = - K,, (6.9) 

K~ = - 12n2 ssp’(zy z*) dz dz* = 24n[10 - tanh I,] 

and g,(z, z*) zz* dz dz* = 24nI,[$lf - I ,  coth I ,  + 11. (6.10) 

Here and below, the integrals are over [-I,, I,]. At order S1, therefore, the contributions 

(6.11) 
respectively, independent of s(z). 

c2) = - (+al R$) + R(’) (6.12) 
Now, (4.17) can be used to evaluate (6.12) for i = 1 and i = 5,  leading to second-order 
contributions to V,  and Q,: 

v) = -hl(al-a,c)-h3a, and v’,”) = -h,(a,-a,c)-h,a,. (6.13) 
The parameters A, are given by 

At order #’, (6.3) gives 
23 )/RIP’. 

(6.14) 
ds hi = K,(z*)--dz*, i = 1,2,3,4, 1 dz* 

where K~ = K ~ ,  K, = K ~ ,  and 

I Kl(z*) = 18n3/~~lo(z,z~,z*)dzdz’ = 18n[l -coshz*/~osh1~], 

rlo(z, z’, z*) z dz dz’ = 18n[z* - Io  sinh z*/sinh lo], 

(6.15) 
K3(z*) = 18r3/~~1, (z ,  z’, z*) z’ dz dz’ = z*K,(z*) - tanh I, K,(z*)/l,, 

K4(z*) = 18n3/~10(z,  z’, z*) zz’ dz dz’ = z*K,(z*) 

- I,,K,(z*)/tanh lo + 9n(c - z*’). I 
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6.1. Trajectories in the tube frame 
For motion in the plane y = 0, we may assume that y = 0. Then, the origin of the 
particle and the direction of its axis are 

(a’,O,c’) = -(a-ac,0, c), (a’,O, 1) = (-a,O, 1) (6.16) 

in tube Cartesian coordinates at leading order in E, and the consistency conditions (4.4) 
yield 

da‘ dc’ da’ 
-= v,+a’v,, -= v,, -=ay. dt dt dt 

With these relations, equations for particle trajectories may be derived. 
At first order in S (6.7) gives 

(6.17) 

(6.18) 

In this approximation, the particle moves in a straight line along the bisector of the 
particle and tube axes, independent of particle shape. The motion is neutrally stable 
with regard to exponential solutions. In general, the particle would eventually collide 
with the wall, in the absence of higher-order effects. 

Substantially different conclusions are reached when second-order, 0(6’), effects are 
included. Combining first- and second-order terms, we obtain from (6.1 l), (6.13) and 
(6.17): 

(6.19) 

neglecting 0(S3) terms. The parameters hi depend on the shape of the particle according 
to (6.14), which may be restated in the form 

Ai=-’r s s ( z ) d z ,  i =  1,2,3,4. 
K( - dz 

10 

(6.20) 

The functions dKJdz are plotted in figure 3 for the case I, = 2. As figure 3 indicates, 
dKJdz and dK,/dz are odd functions of z while dK,/dz and dK3/dz are even functions. 
Therefore, if s(z) is even, then A, = A, = 0, while if s(z) is odd then A, = A, = 0. 

For axisymmetric particles, motion along the tube axis (a’ = a’ = 0) satisfies the 
governing equations. To analyse the stability of this motion, we compute the 
eigenvalues of the matrix in (6.19): 

( i a ~ , ) t  + +a(~, + A,) + o(@ if A, + o ; 1 
SA,,SA, if A, = 0. J (6.21) 

Since a non-zero leading-order term (:) appears in only one element of the matrix, the 
value of A, is dominant in determining the stability of the particle motion. If A, > 0, 
corresponding to particles wider at the ends than at the middle (wasp-waisted 
particles), the motion is unstable, independent of the front-to-rear taper of the particle. 
If A, < 0 (barrel-waisted particles), taper does, however, influence stability. Con- 
sideration of the location of the eigenvalues in the complex plane leads to the following 
cases. For each, an example of a typical particle shape is given. The ‘front’ of the 
particle is at z = I,. Note that these predictions regarding stability are based on the 
solution up to O(6’). Effects of higher-order terms are considered subsequently. 

(i) A, > 0: unstable. Example: particle wider at the ends than at the middle. 
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FIGURE 3. The functions dKJdz, i = 2,3,4, for I, = 2. 

(ii) A, = 0 and Max(A,,A,) > 0: unstable. Example: uniformly tapered particle, 

(iii) A, = Max (A,, A,) = 0 : neutrally stable. Example: perfectly cylindrical particle. 
(iv) A, = 0 and Max (A,, A,) < 0: stable. Example: uniformly tapered particle, 

narrower at front than at rear. 
(v) A, < 0 and A, + A, > 0 : unstable to growing oscillations. Example: particle wider 

at middle than at ends, and wider at front than at rear. 
(vi) A, < 0 and A, +A, = 0 : neutrally stable (constant-amplitude oscillations). 

Example: particle wider at middle than at ends, and symmetric front to rear. 
(vii) A, < 0 and A, +A, < 0: stable. The particle undergoes decaying oscillations. 

Example: particle wider at middle than at ends, and narrower at front than at rear. 
Since inclusion of O(6’) effects leads to behaviour different to that predicted by the 

O(6) theory, the question arises whether O(S3) effects would alter these conclusions. An 
indication may be obtained by considering the effects of perturbing the elements in the 
matrix (6.19) by O(P)  amounts. In the general case A, 4 0, the expression (6.21) for the 
eigenvalues is unchanged, and so the above conclusions still hold, except that case (vi) 
may no longer be neutrally stable. In the special case A, = 0, however, this perturbation 
will alter the eigenvalues (6.21) at leading order, and may affect the stability of the 
motion. For example, consider a uniformly tapered particle (figure 2c). By arguments 
analogous to those made in $27 sideways displacement of this particle results in an 
anticlockwise torque, not shown in figure 2. This torque represents an O(S3) correction 
to the term 6A, appearing in (6.19), and might therefore destabilize the motion. This 
case is examined in $7. 

Higher-order effects for axisymmetric particles may also include coupling between 
the motions of the particle in two orthogonal planes containing the axis, and particle 
rotation about the axis. Such effects would not alter the above conclusions regarding 
stability. The consistency of the above predictions with the numerical results of $7 
(corresponding to 0(1) values of 6) also suggests that the O(P)  analysis captures the 
main features of the particle behaviour. 

Examples of the types of behaviour described above are obtained if the following 
two-parameter family of particle shapes is considered : 

(6.22) 
Evaluating (6.14) and substituting in (6.19), we obtain 

wider at front than at rear. 

s(2) = s, 2 + S2(;g - 2). 

-36s, 36s, 7 (6.23) 
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FIGURE 4. Variation with time of (a) particle displacement a’ and (b)  particle orientation a’, as predicted 
by the second-order theory, for particle shapes corresponding to the cases described in the text, with 
E = 0.1: (i) Ss, = 0, Ss, = -0.02; (ii) as, = 0.01, as, = 0; (iii) Ss, = 0, Ss, = 0; (iv) Ss, = -0.02, 
6s, = 0 ;  (v) Ss, = 0.01, as, = 0.02; (vi) Ss, = 0, Ss, = 0.02; (vii) as, = -0.01, as, = 0.02. Corre- 
sponding particle shapes are indicated, with diameter variations exaggerated for clarity, In the 
unstable cases, curves are truncated when the particle touches the wall. 

where A4 = 9+41~-31~/[1,-tanhl0]. (6.24) 

Figure 4 shows the motion predicted by (6.23) for particle shapes in this family, with 
one example from each of the seven cases described above. 

7. Numerical solutions 
If the gap is not almost uniform, the series expansion may not yield a good 

approximation. For such cases, we used a numerical solution. In all cases considered, 
the flow is symmetric about the plane y = 0, and so the only non-zero components of 
forces, torques and velocities are for i = 1,3 and 5 (see table 1). The equation 

L(P) = %(Z,B) 

was expressed in finite-difference form using centred differences, and solved by 
successive over-relaxation for i = 1,3,5. By symmetry, only the region (0 < 0 d n) was 
considered. A 20 x 20 grid was used for most calculations, and selected cases were 
repeated using finer grids to check the results. For each value of i, the three non-zero 
components of force and moment were then computed by integrating (4.12) using the 
trapezium rule, giving the non-zero components of the resistance matrix Ri,. Equation 
(6.3) was solved to yield particle velocities, and particle trajectories were computed by 
integrating (6.17) using a fourth-order Runge-Kutta scheme. 
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FIGURE 5. Trajectories in the (u’, “)-plane for a conical particle, narrower at the front (G = 0.1, 
as, = -0.01, as, = 0), initially centred on but inclined relative to the tube axis, for several different 
initial inclinations : -, second-order theory; -----, numerical method. 

0.0075 - 

FIGURE 6 .  Trajectories in the (u’, a’)-plane for a particle which is wider in the middle than the ends, and 
narrower at the front than at the rear (e  = 0.1, 6s, = -0.01, 6fSz = 0.02), initially centred on but 
inclined relative to the tube axis: -, second-order theory; -----, numerical method. 

Figure 5 shows a comparison of results from the series method and the numerical 
solution for a slightly tapered conical particle, narrower at the front, initially centred 
on but not aligned with the axis. In this case, E = 0.1, and so ea’ = 0.05 corresponds 
to a 50 % change in the gap width. Note that according to the first-order [O(S)] theory, 
a’ would remain constant and the particle would eventually collide with the wall. The 
O(S2) prediction that the particle will eventually approach axial position (a’ = a’ = 0) 
is supported by the numerical results, implying that higher-order terms do not, in fact, 
destabilize the motion. For small starting angles, the series approach provides a fair 
approximation to the trajectory, but for a starting angle of €01‘ = 0.004, the series 
approach substantially underestimates the maximum excursion made by the particle. 
The O(S2) theory predicts that the particle trajectory approaches the origin along the 
€.a’-axis. However, the numerically computed final approach to the origin is along a line 
at an angle to the Fa’-axis, as a result of the 0(S3) effects mentioned previously. 

Corresponding results are shown in figure 6 for the case of a particle which is wider 
at the middle than at the ends, and wider at the front than at the rear. The series 
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FIGURE 7. (a) Asymmetric particle shape corresponding to a red blood cell in a tube with diameter 
6 pm. (b) Parameters describing particle position in the tube. Note that a’ and a’ are not scaled as 
elsewhere. (c) Particle trajectories in the (a’, a’)-plane, for several different initial conditions. 

solution correctly predicts the qualitative behaviour, and provides a good approxi- 
mation to the motion. 

Numerical results are shown in figure 7 for a rigid particle with a shape corresponding 
to experimentally observed asymmetric red blood cells (Hsu & Secomb, 1989). For 
motion in the observed flow direction, the particle undergoes decaying oscillations, 
corresponding to case (vii) above. Because of the non-axisymmetry of the particle, the 
equilibrium solution is no longer at a’ = a’ = 0. Note that if the flow direction is 
reversed, the equilibrium solution for a rigid particle with this shape is unstable to 
growing oscillations. Since the particle is wider in the middle than at the ends, the 
oscillatory motion is consistent with the predictions of the series method. However, the 
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series method as developed above is not directly applicable to particles such as this red 
cell shape for which the gap length varies around the circumference of the particle (i.e. 
z+ and z- are not constants). Further work is required to develop general criteria for 
the stability of such particles’ motions. It should be emphasized that red blood cells are 
actually highly deformable, and that deformability may influence the stability of 
particle motions. Therefore, the present results are not directly applicable to the 
motion of red cells. 

8. Discussion and conclusions 
A striking conclusion of these studies is that the trajectories of rigid closely fitting 

particles in cylindrical tubes are highly sensitive to the shape of the particle and the flow 
direction. In the case of an axisymmetric particle, motion along the tube axis represents 
an equilibrium solution of the governing equations. In general, this equilibrium is 
unstable if the particle is narrower near the middle than the average of the two ends, 
or more precisely if A, is positive according to (6.20). Otherwise, the equilibrium is 
stable if the leading end of the particle is narrower than the trailing end, and unstable 
if the leading end is larger, as defined by the signs of A, and A,. 

In the case of unstable motions, the series method predicts unbounded increase in 
particle displacement, which in reality is clearly limited by the physical constraint that 
the particle cannot intersect the tube wall. The eventual behaviour in such cases is 
unknown. If the particle has sharp corners at its ends, the lubrication approximation 
may break down when one of these corners closely approaches the tube wall, and the 
subsequent behaviour will depend on the detailed mechanics in the neighbourhood of 
the corner. If, on the other hand, the particle has a smooth profile, like the red-cell 
shape assumed, the series method may break down while the lubrication approximation 
remains valid. The motion in such cases could, in principal, be predicted using our 
numerical approach, but refinement of the mesh would be required. 

Some related experimental studies have been made. Boyd (1964) demonstrated 
qualitatively the effect of taper on the ‘sticking’ of pistons, but did not consider pistons 
with curved profiles. Hochmuth & Sutera (1970) reported that spherical caps flowing 
in tubes generally tend to align themselves with their curved surfaces facing in the 
direction of flow. However, neither of these studies provides a direct test of the results 
presented here. 

Few previous theoretical studies have been made of the non-axisymmetric creeping 
flow of non-spherical particles in fluid-filled tubes, probably because of the difficulties 
involved in solving fully three-dimensional Stokes flow problems. Use of lubrication 
theory greatly simplifies the governing equations, while permitting consideration of a 
variety of particle shapes, subject to the constraint that the particles fit closely in the 
tube. It would be of great interest to determine whether the conclusions stated above, 
regarding the stability of particle motions, generalize to particles that are not closely 
fitting. 

This work was supported by NIH Grants HL345.55 and HL07249. We thank several 
referees for helpful suggestions. 
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